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It is shown that, when the velocity of heat propagation is considered,  the thermoelas t i -  
city problem with instantaneous heating of a surface does not have a solution. A method is 
proposed for determining the amplitude of a thermoelas t ic  wave from the initial conditions. 

It is well known that in the conventional theory of heat conduction ones assumes  the heat propagation 
velocity to be infinite. In dynamic thermoelas t ic i ty  problems this premise leads, formally,  to the appear-  
ance of s t r e s se s  at a point a l ready before the wave has reached it. Such a "blurring" of the thermal  s t r e ss  
wave front occurs  even when the tempera ture  profile is at variance with the elastic wave (see [1]). 

Introducing a finite heat propagation velocity yields a hyperbolic equation of heat conduction (see, e.g., 
[2]): 
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In dielectr ics ,  where heat conduction through the lattice is the basic mode of heat t ransmiss ion ,  the 
normal  vibrations of all a toms together  are  t reated as a phonon gas. At t empera tures  above the Debye 
point the nonharmonic interaction determines  the mean free path length of the phonon and the establ ishment  
of thermal  equilibrium. The velocity of phonons, i.e., of heat propagation, happens to be the velocity of 
sound whether through c rys ta l s  or  through amorphous glass [3]. 

In metals at moderate or high tempera tures  the propagation of heat is due to free e lect rons  subject 
to the F e r m i - D i r a c  s tat is t ics .  It follows from this distribution that only those e lect rons  contribute to the 
conduction of heat whose energy approaches the Fermi  level within approximately kT [4]. The e lectron 
velocity corresponding to this energy  is in most  metals approximately 106m/sec. Such a high velocity of 
"Fermi"  electrons is still not sufficient to ensure a high velocity of heat propagation in a metal, however, 
this latter velocity being that at which the tempera ture  r ise of the lattice alone is propagated. A limiting 
factor  here is the time required for energy t rans fe r  between atoms in the metal. A r igorous analysis  re -  
quires  a solution of the relaxation equation for e lectrons and phonons. On the basis  of known results  [3, 5], 
we establish that the t rans i t  t ime for an electron moving at a 106m/sec velocity in a metal is by 2-4 orders  
of magnitude shor te r  thanthe e l e c t r o n -  phonon relaxation time t r ~ 10 -11 sec [5]. This value agrees  with 
the time t r which A. V. Lykov determined for aluminum [2]. The heat propagation velocity corresponding 
to this t ime 

UT= ~/r  a tp 

amounts to severa l  ki lometers  per second, i.e., is of the same order  of magnitude as the velocity of sound. 

We will now consider  thermoelas t ic i ty  problems with the heat propagation velocity taken equal to the 
velocity of sound, i.e., to a specific velocity in substances with phonon heat conductivity. When t empera -  
ture and thermal  s t r e ss  perturbations t ravel  through a substance at equal velocities,  then, in essence,  a 
wave is propagated. When the initial conditions are  given in t e rms  of discrete  values (momentary thermal  
shock), then the process  variables  including pressure  and tempera ture  as well as density (within elastic 
s t rain limits) of such a wave change jumpwise. For  this reason,  the equations for a continuous medium, 
i.e., the equations of thermoelas t ic i ty ,  a re  not applicable when the state variables  of that medium are to be 

Scient i f ic-Research Institute of Machine Design, Moscow. Translated from Inzhenerno-Fizicheski i  
Zhurnal, Vol. 21, No. 1, pp. 176-180, July, 1971. Original ar t ic le  submitted September 18, 1970. 

1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

938 



e 1 '% 
0 

-Ez2 

\ 
6 \ 

\ 

6 t 

0,5 ~",, , i  
o r 2 

H 

I, 
I 

3 , o /0 20 ~, 

Fig. 1. Tempera ture  and s t r ess  distributions at in- 
stants of t ime: T= i (I) and T=20 (II) in dimensionless 
0, Z, ~ coordinates:  (a) temperature  wave 0, (b) 2zz 
s t r e s ses ,  and (c) Y xx = Zyy s t r e s ses .  Dashed lines 
r e fe r  to VT = ~o [1]. 

determined at a rupture point. Therefore ,  dynamic problems of thermoelas t ic i ty  with the source "switched 
on"momenta r i ly  cannot, in principle, be solved without introducing additional conditions at the jump. 

With an infinite heat propagation velocity, as has been assumed ear l ie r ,  the s t r e s se s  will change 
jumpwise while the tempera ture  changes smoothly [1]. Such an " isothermal"  jump is known in gas dynamics 
with radiative heat t r ans fe r  (e.g., in [6]), provided that the thermal  flux is exactly proportional to the tem-  
perature  gradient,  i.e., when the equation of heat conduction is parabolic.  Using the hyperbolic equation 
(1), however, the problem as analyzed by M. D. Mikhailov in [7] involves a discontinuity prec ise ly  where 
M ~  1, i.e., there is no solution for the case where the heat propagation velocity is equal to the veloci tyof  
sound. 

An approximate solution to dynamic problems of thermoelas t ic i ty  with a momentary  tempera ture  r ise 
can be obtained, in the two-dimensional  as well as in the three-dimensional  case, by superposing the quasi-  
static solution on the elast ic wave specified by the initial conditions at the jump. 

Let us now consider  the problem of a momentary  thermal  shock in a half-space.  When VT=C0, the 
hyperbol icequat ion (1) yields a frontal t empera ture  jump with an amplitude which decreases  according to 

T ex [ --c~t \ 7"= ,,~ P [ ~ T }  

The form of a t empera ture  wave with a jump is shown in Fig. la  at  two instants of t ime and is com-  
pared here with the solution to the,parabolic tempera ture  equation (v T = ~). The tempera ture  jump alone 
remains  significant before t <  10 -~~ sec, its amplitude decreas ing with time. We note that a tempera ture  
wave with a jump can be obtained from [7] when M = 1 in our case.  

At the instant the tempera ture  r ises ,  a thin surface layer of the substance is heated up without volume 
expansion and a t he rma l  p ressu re  P is generated in it momentar i ly .  This jump of thermal  p ressure  pro-  
duces an elast ic wave which t ravels  from the surface deep into the bulk of the substance. In the two-dimen- 
sional case with dissipation d is regarded the amplitude of this wave does not change throughout the process .  

Since the heating produces an isotropic compress ion  of the substance, the propagation velocity of a 
s t r e ss  jump can be expressed in t e rms  of the bulk modulus of compress ion  K: 

•//K Co = - -  , whereK = 
P 

E 
~ 

3(t -2v) 

In our case the strain is uniform and the per unit change of volume AV/V 0 is related to s t ress  ~zz as fol- 
lows (see, e.g., [8]): 
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AS_' _ ~** = _ a~__.a_~ (1 - -  2 v ) .  

V o 3K E 

Considering that AV/V 0 = a  T m by definition, we obtain 

E a T m  

azz 1 - -  2v 

The remaining components of the s t ress  tensor  under bulk compress ion  are  ~zz'  as can be easi ly  verified 
by insert ing the value found here into the known express ions:  

v Eo~Tm E a T . ~  

r = auY 1 - -  v 1 - -  v 1 - -  2v  

The quasistat ic component of ~zz is in our ease equal to zero,  i.e., s t r e s s  Crzz (Fig. lb) is represented by 
a wave penetrating the substance without attenuation. The thermoelas t ic  wave represent ing s t r e s se s  ~xx 
and ~yy soon separa tes  from the quasistat ic  component and continues to t ravel  as a single wave (Fig. lc) .  

Quasistatic s t r e s se s  in the two-dimensional  homogeneous case "follow" the tempera ture  field and 

their  maxima at the surface ( z = 0) are  

E~Tra  
UXX "~ Uyy "~ 1 - -  v 

The main feature of the solution shown in Fig. 1 for a momentary  thermal  shock is the steep front of 
the thermoelas t ic  wave, which differs from the gradual decrease  of akk shown in ea r l i e r  re ferences  and 
due to the formal  introduction of an infinite heat propagation velocity. For  comparison,  we also show here 
tempera ture  and s t r ess  profiles based on the parabolic equation of heat conduction. The difference of am-  
plitudes behind the wave front does not exceed 15-30% and dec reases  further  with t ime. It is physically 
impossible for large s t r e s ses  to appear  ahead of the wave [1], as the obtained solution demonstra tes .  

In the case of a thermal  shock with a finite heating time, the front of the tempera ture  wave does not 
jump and the wave does not coincide with the elastic wave. The s t r ess  jump, which t ravels  through the 
substance, can then be found from the solution to the dynamic problem. Specifically, the generalization 
of a two-dimensional  thermal  shock with a finite heat propagation velocity [7] and linear heating in the time 

till T = T m 
to a t e  

CO 

y i e l d s  
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where M = c0/v T (e 0 is the velocity of sound), 0 = T / T  m, ~=c~t / a ,  ~ = C o z / a ,  and T m 

the initial temperature  jump. At the front of the elast ic  wave (r=~) we have 

is the magnitude of 

={1 ( )[ ( , )  ] M -  1 exp - -  1 
exp 2-M M + i  M + I  

zz "g0 

T (T-- . .U)/2M 2 

-r exp - -  x 
- - 2 M  (I ~_ M~-) 1 - -M ~ ~ - - - f i - ~ i ~ -  

0 "c/2M 

from which it is not difficult to show that the second t e rm on the right-hand side becomes zero  and the mag- 

nitude of the s t r e ss  jump becomes 
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when M ~ 1. Express ion (2) indicates that, when the thermal  shock time T o is shortened, the amplitude of 
s t r e s se s  increases  and rupture will occur  when T o = 0. 

For  solids with predominant e lectron thermal  conductivity (metals and semiconductors  at high tem-  
perature),  as has been shown already,  the heat propagation velocity v T is a lmost  equal to the velocity of 
sound. Thus, the propagation of tempera ture  and s t r ess  perturbations will also have the cha rac te r  of a 
weak shock (acoustic) wave whose length is determined by the kinetics of e l ec t ron -phonon  relaxations and 
of sound dispersion.  

The width of the shock wave alone is determined by the difference between the velocity of sound in the 
original  and in the compressed  substance, this difference being approximately equal to 0.2c0P/E in most  
solids. Taking into account variat ions in the elast ic constants E and v will add a cor rec t ion  of a higher 
o rder  of smal lness  [8]. If a thermal  shock excites other wave modes besides expansion waves, then their  
dispers ion will also increase  the width of the compressed  layer.  The profile of the thermoelas t ic  wave 
alone can be determined only with the complete equation of state of the solid known. 

It is to be noted that f rom the condition for p ressure  P at a jump 

P ~ - -  O'zz ~ pUC o 

we can find the velocity of the mass  in the substance behind the wave: 

u = - -  ~=~ = a T l / / -  3E -. 
pc 0 V p (1 - -  2v) 

For  example, for copper  (~ = 1.65 - 10 -5 deg -I,  v = 0.34, and E = 1.2 �9 105 MN/m 2) at a tempera ture  jump of 
20~ the p ressu re  is P = 124 MN/m 2 and the mass  velocity is u =3.5 m / s e c .  

T (0) is the tempera ture  (dimensionless}; 
z (~) is the coordinate (dimensionless); 
t (T) is the t ime (dimensionless}; 
or(Z) is the s t r e s s  (dimensionless); 
P is the p ressure ;  
a is the thermal  diffusivity; 
v T is the propagation velocity; 
c o is the velocity of sound; 
u is the mass  velocity; 
V is the volume 
k is the Boltzmann constant; 
K is the bulk modulus of compress ion;  

is the thermal  expansivity; 
p is the density; 
v is the Poisson ratio; 
E in Young's modulus of elast ici ty.  

N O T A T I O N  

1 .  

. 

3. 

4. 

5. 

6. 

7 .  

8 .  

L I T E R A T U R E  C I T E D  

G. Parcus ,  Transient Thermal  Stresses  [Russian translation],  Izd. GIFML, Moscow (1963). 
A. V. Lykov, Theory  of Heat Conduction [in Russian], Izd. Vysshaya Shkola, Moscow (1967). 
Ch. Kittel, Introduction to Solid State Physics  [Russian translation],  Izd. G1TTL, Moscow (1957). 
D. M. Seiman, Electrons and Phonons [Russian translation],  IL, Moscow (1962}. 
M. I. Kaganov, I. M. Lifshits,  and L. V. Tanatarov,  Zh. Eksp. i Teor .  Fiz.,  31, 232 (1956}. 
Ya. B. Zel 'dovich and Yu. P. Raizer ,  Physics  of Shock Waves and of High-Tem-~ra ture  Hydrody- 
namic Phenomena [in Russian], Izd. Nauka, Moscow (1966). 
M. D. Mikhailov, Inzh. Fiz. Zh., 16, No. 1, 132 (1969). 
L. D. Landau and E. M. Lifshits,  Theory  of Elast ici ty [in Russian], Izd. Nauka, Moscow (1965). 

941 


